stdlib_sorting_ord_sort.fypp 源文件

此文件同时受 Fortran 标准库许可证和附加许可要求的约束,因为它包含其他软件的翻译。

Fortran 标准库(包括此文件)在 MIT 许可证下分发,该许可证应包含在库的分发版中。

版权所有 (c) 2021 Fortran stdlib 开发人员

特此免费授予任何获得本软件和相关文档文件(“软件”)副本的人,不受限制地处理软件的权利,包括但不限于使用、复制、修改、合并、发布、分发、再许可和/或出售软件副本的权利,并允许软件提供给的人员这样做,但须遵守以下条件

上述版权声明和本许可声明应包含在所有副本或软件的任何重要部分中。

软件“按原样”提供,不提供任何形式的明示或暗示保证,包括但不限于适销性、特定用途适用性和非侵权的保证。在任何情况下,作者或版权持有人均不对任何索赔、损害或其他责任负责,无论是在合同、侵权或其他方面产生的,与软件或软件的使用或其他交易有关。

通用子程序 ORD_SORT 基本上是将 slice.rs 中的 "Rust" sort 排序例程翻译成 Fortran 2008。rust sort 实现随以下标题分发

版权所有 2012-2015 Rust 项目开发人员。请参阅此分发版顶层目录中的 COPYRIGHT 文件以及 https://rust-lang.net.cn/COPYRIGHT。

根据 Apache 许可证 2.0 版获得许可或 MIT 许可证,由您选择。除非根据这些条款,否则不得复制、修改或分发此文件。

因此,原始 slice.rs 代码的许可证与在 MIT 许可证下在 Fortran 标准库中使用修改后的代码版本兼容。



源代码

#:include "common.fypp"
#:set INT_TYPES_ALT_NAME = list(zip(INT_TYPES, INT_TYPES, INT_TYPES, INT_KINDS))
#:set REAL_TYPES_ALT_NAME = list(zip(REAL_TYPES, REAL_TYPES, REAL_TYPES, REAL_KINDS))
#:set STRING_TYPES_ALT_NAME = list(zip(STRING_TYPES, STRING_TYPES, STRING_TYPES, STRING_KINDS))
#:set CHAR_TYPES_ALT_NAME = list(zip(["character(len=*)"],  ["character(len=:)"], ["character(len=len(array))"], ["char"]))
#:set BITSET_TYPES_ALT_NAME = list(zip(BITSET_TYPES, BITSET_TYPES, BITSET_TYPES, BITSET_KINDS))

#! For better code reuse in fypp, make lists that contain the input types,
#! with each having output types and a separate name prefix for subroutines
#! This approach allows us to have the same code for all input types.
#:set IRSCB_TYPES_ALT_NAME = INT_TYPES_ALT_NAME + REAL_TYPES_ALT_NAME + STRING_TYPES_ALT_NAME + CHAR_TYPES_ALT_NAME &
    & + BITSET_TYPES_ALT_NAME

#:set SIGN_NAME = ["increase", "decrease"]
#:set SIGN_TYPE = [">", "<"]
#:set SIGN_OPP_TYPE = ["<", ">"]
#:set SIGN_NAME_TYPE = list(zip(SIGN_NAME, SIGN_TYPE, SIGN_OPP_TYPE))

!! Licensing:
!!
!! This file is subjec† both to the Fortran Standard Library license, and
!! to additional licensing requirements as it contains translations of
!! other software.
!!
!! The Fortran Standard Library, including this file, is distributed under
!! the MIT license that should be included with the library's distribution.
!!
!!   Copyright (c) 2021 Fortran stdlib developers
!!
!!   Permission is hereby granted, free of charge, to any person obtaining a
!!   copy of this software and associated documentation files (the
!!   "Software"),  to deal in the Software without restriction, including
!!   without limitation the rights to use, copy, modify, merge, publish,
!!   distribute, sublicense, and/or sellcopies of the Software, and to permit
!!   persons to whom the Software is furnished to do so, subject to the
!!   following conditions:
!!
!!   The above copyright notice and this permission notice shall be included
!!   in all copies or substantial portions of the Software.
!!
!!   THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
!!   OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
!!   MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
!!   IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
!!   CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
!!   TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
!!   SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
!!
!! The generic subroutine, `ORD_SORT`, is substantially a translation to
!! Fortran 2008 of the `"Rust" sort` sorting routines in
!! [`slice.rs`](https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs)
!! The `rust sort` implementation is distributed with the header:
!!
!!   Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
!!   file at the top-level directory of this distribution and at
!!   https://rust-lang.net.cn/COPYRIGHT.
!!
!!   Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
!!   https://apache.ac.cn/licenses/LICENSE-2.0> or the MIT license
!!   <LICENSE-MIT or https://open-source.org.cn/licenses/MIT>, at your
!!   option. This file may not be copied, modified, or distributed
!!   except according to those terms.
!!
!! so the license for the original`slice.rs` code is compatible with the use
!! of modified versions of the code in the Fortran Standard Library under
!! the MIT license.

submodule(stdlib_sorting) stdlib_sorting_ord_sort

    implicit none

contains

#:for t1, t2, t3, name1 in IRSCB_TYPES_ALT_NAME
    module subroutine ${name1}$_ord_sort( array, work, reverse )
        ${t1}$, intent(inout)         :: array(0:)
        ${t3}$, intent(out), optional :: work(0:)
        logical, intent(in), optional :: reverse

        if (optval(reverse, .false.)) then
            call ${name1}$_decrease_ord_sort(array, work)
        else
            call ${name1}$_increase_ord_sort(array, work)
        endif

    end subroutine ${name1}$_ord_sort
#:endfor

#:for sname, signt, signoppt in SIGN_NAME_TYPE
#:for t1, t2, t3, name1 in IRSCB_TYPES_ALT_NAME

    subroutine ${name1}$_${sname}$_ord_sort( array, work )
! A translation to Fortran 2008, of the `"Rust" sort` algorithm found in
! `slice.rs`
! https://github.com/rust-lang/rust/blob/90eb44a5897c39e3dff9c7e48e3973671dcd9496/src/liballoc/slice.rs#L2159
! The Rust version in turn is a simplification of the Timsort algorithm
! described in
! https://svn.python.org/projects/python/trunk/Objects/listsort.txt, as
! it drops both the use of 'galloping' to identify bounds of regions to be
! sorted and the estimation of the optimal `run size`. However it remains
! a hybrid sorting algorithm combining an iterative Merge sort controlled
! by a stack of `RUNS` identified by regions of uniformly decreasing or
! non-decreasing sequences that may be expanded to a minimum run size and
! initially processed by an insertion sort.
!
! Note the Fortran implementation simplifies the logic as it only has to
! deal with Fortran arrays of intrinsic types and not the full generality
! of Rust's arrays and lists for arbitrary types. It also adds the
! estimation of the optimal `run size` as suggested in Tim Peters'
! original `listsort.txt`, and an optional `work` array to be used as
! scratch memory.
        ${t1}$, intent(inout)         :: array(0:)
        ${t3}$, intent(out), optional :: work(0:)

        ${t2}$, allocatable :: buf(:)
        integer(int_index) :: array_size
        integer :: stat

        array_size = size( array, kind=int_index )
        if ( present(work) ) then
            if ( size(work, kind=int_index) < array_size/2 ) then
                error stop "${name1}$_${sname}$_ord_sort: work array is too small."
            end if
! Use the work array as scratch memory
            call merge_sort( array, work )
        else
! Allocate a buffer to use as scratch memory.
            #:if t1[0:4] == "char"
            allocate( ${t3}$ :: buf(0:array_size/2-1), &
                      stat=stat )
            #:else
            allocate( buf(0:array_size/2-1), stat=stat )
            #:endif
            if ( stat /= 0 ) error stop "${name1}$_${sname}$_ord_sort: Allocation of buffer failed."
            call merge_sort( array, buf )
        end if

    contains

        pure function calc_min_run( n ) result(min_run)
!! Returns the minimum length of a run from 32-63 so that N/MIN_RUN is
!! less than or equal to a power of two. See
!! https://svn.python.org/projects/python/trunk/Objects/listsort.txt
            integer(int_index)             :: min_run
            integer(int_index), intent(in) :: n

            integer(int_index) :: num, r

            num = n
            r = 0_int_index

            do while( num >= 64 )
                r = ior( r, iand(num, 1_int_index) )
                num = ishft(num, -1_int_index)
            end do
            min_run = num + r

        end function calc_min_run


        pure subroutine insertion_sort( array )
! Sorts `ARRAY` using an insertion sort.
            ${t1}$, intent(inout) :: array(0:)

            integer(int_index) :: i, j
            ${t3}$ :: key

            do j=1, size(array, kind=int_index)-1
                key = array(j)
                i = j - 1
                do while( i >= 0 )
                    if ( array(i) ${signoppt}$= key ) exit
                    array(i+1) = array(i)
                    i = i - 1
                end do
                array(i+1) = key
            end do

        end subroutine insertion_sort


        pure function collapse( runs ) result ( r )
! Examine the stack of runs waiting to be merged, identifying adjacent runs
! to be merged until the stack invariants are restablished:
!
! 1. len(-3) > len(-2) + len(-1)
! 2. len(-2) > len(-1)
            integer(int_index) :: r
            type(run_type), intent(in), target :: runs(0:)

            integer(int_index) :: n
            logical :: test

            n = size(runs, kind=int_index)
            test = .false.
            if (n >= 2) then
                if ( runs( n-1 ) % base == 0 .or. &
                     runs( n-2 ) % len <= runs(n-1) % len ) then
                    test = .true.
                else if ( n >= 3 ) then ! X exists
                    if ( runs(n-3) % len <= &
                         runs(n-2) % len + runs(n-1) % len ) then
                        test = .true.
!               |X| <= |Y| + |Z| => will need to merge due to rho1 or rho2
                    else if( n >= 4 ) then
                        if ( runs(n-4) % len <= &
                             runs(n-3) % len + runs(n-2) % len ) then
                            test = .true.
!               |W| <= |X| + |Y| => will need to merge due to rho1 or rho3
                        end if
                    end if
                end if
            end if
            if ( test ) then
! By default merge Y & Z, rho2 or rho3
                if ( n >= 3 ) then
                    if ( runs(n-3) % len < runs(n-1) % len ) then
                        r = n - 3
! |X| < |Z| => merge X & Y, rho1
                        return
                    end if
                end if
                r = n - 2
! |Y| <= |Z| => merge Y & Z, rho4
                return
            else
                r = -1
            end if

        end function collapse


        pure subroutine insert_head( array )
! Inserts `array(0)` into the pre-sorted sequence `array(1:)` so that the
! whole `array(0:)` becomes sorted, copying the first element into
! a temporary variable, iterating until the right place for it is found.
! copying every traversed element into the slot preceding it, and finally,
! copying data from the temporary variable into the resulting hole.

            ${t1}$, intent(inout) :: array(0:)

            ${t3}$ :: tmp
            integer(int_index) :: i

            tmp = array(0)
            find_hole: do i=1, size(array, kind=int_index)-1
                if ( array(i) ${signt}$= tmp ) exit find_hole
                array(i-1) = array(i)
            end do find_hole
            array(i-1) = tmp

        end subroutine insert_head


        subroutine merge_sort( array, buf )
! The Rust merge sort borrows some (but not all) of the ideas from TimSort,
! which is described in detail at
! (http://svn.python.org/projects/python/trunk/Objects/listsort.txt).
!
! The algorithm identifies strictly descending and non-descending
! subsequences, which are called natural runs. Where these runs are less
! than a minimum run size they are padded by adding additional samples
! using an insertion sort. The merge process is driven by a stack of
! pending unmerged runs. Each newly found run is pushed onto the stack,
! and then pairs of adjacentd runs are merged until these two invariants
! are satisfied:
!
! 1. for every `i` in `1..size(runs)-1`: `runs(i - 1)%len > runs(i)%len`
! 2. for every `i` in `2..size(runs)-1`: `runs(i - 2)%len >
!    runs(i - 1)%len + runs(i)%len`
!
! The invariants ensure that the total running time is `O(n log n)`
! worst-case.

            ${t1}$, intent(inout) :: array(0:)
            ${t3}$, intent(inout) :: buf(0:)

            integer(int_index) :: array_size, finish, min_run, r, r_count, &
                start
            type(run_type) :: runs(0:max_merge_stack-1), left, right

            array_size = size(array, kind=int_index)

! Very short runs are extended using insertion sort to span at least
! min_run elements. Slices of up to this length are sorted using insertion
! sort.
            min_run = calc_min_run( array_size )

            if ( array_size <= min_run ) then
                if ( array_size >= 2 ) call insertion_sort( array )
                return
            end if

! Following Rust sort, natural runs in `array` are identified by traversing
! it backwards. By traversing it backward, merges more often go in the
! opposite direction (forwards). According to developers of Rust sort,
! merging forwards is slightly faster than merging backwards. Therefore
! identifying runs by traversing backwards should improve performance.
            r_count = 0
            finish = array_size - 1
            do while ( finish >= 0 )
! Find the next natural run, and reverse it if it's strictly descending.
                start = finish
                if ( start > 0 ) then
                    start = start - 1
                    if ( array(start+1) ${signoppt}$ array(start) ) then
                        Descending: do while ( start > 0 )
                            if ( array(start) ${signt}$= array(start-1) ) &
                                exit Descending
                            start = start - 1
                        end do Descending
                        call reverse_segment( array(start:finish) )
                    else
                        Ascending: do while( start > 0 )
                            if ( array(start) ${signoppt}$ array(start-1) ) exit Ascending
                            start = start - 1
                        end do Ascending
                    end if
                end if

! If the run is too short insert some more elements using an insertion sort.
                Insert: do while ( start > 0 )
                    if ( finish - start >= min_run - 1 ) exit Insert
                    start = start - 1
                    call insert_head( array(start:finish) )
                end do Insert
                if ( start == 0 .and. finish == array_size - 1 ) return

                runs(r_count) = run_type( base = start, &
                                          len = finish - start + 1 )
                finish = start-1
                r_count = r_count + 1

! Determine whether pairs of adjacent runs need to be merged to satisfy
! the invariants, and, if so, merge them.
                Merge_loop: do
                    r = collapse( runs(0:r_count - 1) )
                    if ( r < 0 .or. r_count <= 1 ) exit Merge_loop
                    left = runs( r + 1 )
                    right = runs( r )
                    call merge( array( left % base: &
                                       right % base + right % len - 1 ), &
                                left % len, buf )

                    runs(r) = run_type( base = left % base, &
                                        len = left % len + right % len )
                    if ( r == r_count - 3 ) runs(r+1) = runs(r+2)
                    r_count = r_count - 1

                end do Merge_loop
            end do
            if ( r_count /= 1 ) &
                error stop "MERGE_SORT completed without RUN COUNT == 1."

        end subroutine merge_sort


        pure subroutine merge( array, mid, buf )
! Merges the two non-decreasing runs `ARRAY(0:MID-1)` and `ARRAY(MID:)`
! using `BUF` as temporary storage, and stores the merged runs into
! `ARRAY(0:)`. `MID` must be > 0, and < `SIZE(ARRAY)-1`. Buffer `BUF`
! must be long enough to hold the shorter of the two runs.
            ${t1}$, intent(inout) :: array(0:)
            integer(int_index), intent(in)  :: mid
            ${t3}$, intent(inout) :: buf(0:)

            integer(int_index) :: array_len, i, j, k

            array_len = size(array, kind=int_index)

! Merge first copies the shorter run into `buf`. Then, depending on which
! run was shorter, it traces the copied run and the longer run forwards
! (or backwards), comparing their next unprocessed elements and then
! copying the lesser (or greater) one into `array`.

            if ( mid <= array_len - mid ) then ! The left run is shorter.
                buf(0:mid-1) = array(0:mid-1)
                i = 0
                j = mid
                merge_lower: do k = 0, array_len-1
                    if ( buf(i) ${signoppt}$= array(j) ) then
                        array(k) = buf(i)
                        i = i + 1
                        if ( i >= mid ) exit merge_lower
                    else
                        array(k) = array(j)
                        j = j + 1
                        if ( j >= array_len ) then
                            array(k+1:) = buf(i:mid-1)
                            exit merge_lower
                        end if
                    end if
                end do merge_lower
            else ! The right run is shorter ! check that it is stable
                buf(0:array_len-mid-1) = array(mid:array_len-1)
                i = mid - 1
                j = array_len - mid -1
                merge_upper: do k = array_len-1, 0, -1
                    if ( buf(j) ${signt}$= array(i) ) then
                        array(k) = buf(j)
                        j = j - 1
                        if ( j < 0 ) exit merge_upper
                    else
                        array(k) = array(i)
                        i = i - 1
                        if ( i < 0 ) then
                            array(0:k-1) = buf(0:j)
                            exit merge_upper
                        end if
                    end if
                end do merge_upper
            end if
        end subroutine merge


        pure subroutine reverse_segment( array )
! Reverse a segment of an array in place
            ${t1}$, intent(inout) :: array(0:)

            integer(int_index) :: lo, hi
            ${t3}$ :: temp

            lo = 0
            hi = size( array, kind=int_index ) - 1
            do while( lo < hi )
                temp = array(lo)
                array(lo) = array(hi)
                array(hi) = temp
                lo = lo + 1
                hi = hi - 1
            end do

        end subroutine reverse_segment

    end subroutine ${name1}$_${sname}$_ord_sort

#:endfor
#:endfor

end submodule stdlib_sorting_ord_sort